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Cluster model for compaction of vibrated granular materials

Konstantin L. Gavrilov*
Department of Physics and Enrico Fermi Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 606

~Received 20 October 1997!

In this paper we present a one-dimensional model describing properties of compaction observed in recent
experiments with vibrated granular materials. In this model, a granular material undergoing vertical vibrations
is considered as a system of randomly packed clusters. Each cluster in the system is supposed to be hexago-
nally packed to the maximum possible density, and porosity of material arises from random packing of the
clusters. Vibrations cause fragmentation of clusters through separation of individual particles from a cluster,
and reassociation of the individual particles with surrounding clusters. This model successfully describes
experimental results on the dynamics of granular compaction, reversible and irreversible behavior, dependence
of the steady-state density on the magnitude of external vibrations, and predicts the crystallization of the
material for a small magnitude of vibrations. It also connects microscopic properties of granular media with the
experimental data on density fluctuations, such as temporal behavior, amplitude, and spectral properties of the
fluctuations. In combination with experiment, this model can be instrumental in extracting constants of the
mechanism and rate of cluster fragmentation, clusters arrangement in the media, and voids distribution. The
importance and effectiveness of the cluster approach are discussed as the key points of the model.
@S1063-651X~98!00908-8#

PACS number~s!: 81.05.Rm, 05.40.1j, 46.10.1z
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I. INTRODUCTION

Settling of a vibrated granular material into a more co
pact state is important to a wide range of industries and
many technological processes in which the density of gra
lar solids needs to be controlled@1#. The underlying struc-
tural and dynamic properties of granular systems are a
ject of great interest for physicists@2–11#. To understand
these properties, a number of studies in well controlled
perimental conditions have been carried out@3,4#: monodis-
perse spherical glass particles were confined to a long,
cylindrical tube and were subjected to vertical vibration
The particles were baked prior to loading in the tube a
maintained under vacuum to prevent uncontrollable cohe
between the particles and a change of their dielectric
sponse due to the presence of water vapor. These ex
ments provided important information on time-depend
properties of compaction and were given a phenomenol
cal description@5#.

The theoretical understanding of compaction on a mic
scopic level is a nontrivial task, and still remains an op
area of research@6–11#. We view an approach assuming tw
times of relaxation@4,7# for individual particles and for clus
ters of particles as an important step in the direction of c
ating a microscopic theory, because it connects the exp
mental phenomenological properties to the microstructure
granular media.

Clustering is a generic property of systems with dissi
tion @12,13# and can be a primary effect controlling the m
crodynamics of the systems through inelastic collapse@14–
16# or through constraining the motion of individual particl
in such systems@10#. Recently the cluster approach was us
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successfully to explain nonlinear dynamic properties of u
interrupted traffic flow@17–19#. As will be shown here, the
same approach can be successfully applied to interpret
results on the dynamics of compaction of granular mate
@20–22#.

In the microscopic model that was developed, granu
material undergoing vertical vibrations is considered a
system of randomly packed clusters that undergo fragme
tion and reassociation. Motivation for its development a
the underlying basic assumptions are described in Sec. I
Sec. III, results of model simulations are presented, d
cussed, and compared with experiments. Discussed in
IV is the microscopic basis of this model, and how it can
used in conjunction with experiment to study the microstru
ture and microdynamics of granular materials.

II. DEVELOPMENT OF A MODEL OF GRANULAR
COMPACTION

The starting point in the derivation of the model discuss
here is the analogy in the structural and dynamic proper
of a vibrated granular material with those of congested tra
flow.

The phenomenon of compaction results from the ex
tence of packing defects, such as voids, in a rando
packed granular material@Fig. 1~a!#. Shaking of the materia
causes rearrangement of grains and voids. When a void
comes large enough in size to accommodate an overla
grain, the grain falls into the void. Consecutive repetition
this process reduces porosity of the material and make
denser.

Similar events occur in congested traffic flow, which
not perfectly homogeneous@19# @Fig. 1~b!#, where car clus-
ters are constantly involved in an aggregation-fragmenta
process. In the description of the dynamics of traffic flow~in
a regime less dense than that presented by gravitating gr
2107 © 1998 The American Physical Society
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2108 PRE 58KONSTANTIN L. GAVRILOV
lar material!, a cluster model was developed that was s
cessful in explaining the nonlinear behavior of density flu
tuations@17–19#. Because of the analogy, and earlier resu
on clustering in granular media@4,6,7,10–13#, it is tempting
to attempt a description of the latter media using an ext
sion of the formalism that described the dynamics of tra
flow. For this task, the following assumptions were ma
about the structure and dynamics of a granular material.

A. Structure of a randomly packed granular material

~i! We consider a granular material undergoing verti
vibrations asa system of randomly packed clusters@Fig.
1~a!#. Each cluster in the system is supposed to beideally
packed, that is, to its maximum possible density. For a sy
tem of spherical beads, the maximum density is achieved
hexagonal packing and is equal to 0.74r0 , wherer0 is the
density of the beads material.

~ii ! The cluster view of granular media,~i!, implies that
the media can be subdivided into a number of subsyst
~clusters!, each ideally packed spontaneously. This gives
to packing defects, voids, as a result of mismatched plac
of the ideally packed clusters@Fig. 2~a!#. Then the volume of

FIG. 1. Similarity between granular material and traf
flow: from structure to dynamics.~a! Graphical representation o
granular material as a system of randomly packed clusters of
ticles with voids in between. Each cluster is packed to maxim
possible density~hexagonal lattice!. ~b! Graphical representation o
congested traffic flow as a system of randomly packed car clus
with voids between the clusters. Each car cluster is packed to
maximum possible density~‘‘bumper-to-bumper’’!.
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voids introduced into the system by one cluster can be
sumed to be proportional to the surface area of the clust

DVvoids5v1 j 2/3, ~1!

where j is the number of beads in the cluster andv1 is a
coefficient of proportionality~v1 can be viewed as a mea
void volume per one particle of a cluster surface!.

Expression~1! makes porosity of granular media depe
on the number and sizes of clusters in the media, i.e.,
distribution of clusters,nj , with respect to cluster sizej . The
total void volume can then be written as follows:

Vvoid total5v1( nj j
2/3. ~2!

On this basis, a formula can be derived yielding the densir
of a granular material consisting ofNtot beads, as a function
of the cluster size distribution:

r50.74r0

Ntot1v1Ntot
2/3

Ntot1v1(
; j

nj j 2/3

, ~3!

whereNtot is a total number of beads in the system. It is ea
to see that, when all theNtot beads are packed hexagona
into one cluster, expression~3! yields density 0.74r0 .

One can also see a close resemblance between expre
~3! and a phenomenological stroboscopic law, recently
rived for compaction@5#. We consider this similarity as an
important confirmation of the assumptions made about
microscopic structure and phenomenological behavior
granular materials.

B. Kinetics and dynamics of compaction: Shaking a system
of clusters

We have assumed that vibrations cause fragmentation
reassociation of clusters.

~i! The fragmentation is considered as a process of se
rating individual particles from the cluster as a result of
sudden tap on the system.

Each tap would split a clustercj consisting ofj particles
into a cluster of (j 2K) particles andK individual particles,
if j .K, or just split the whole cluster intoj individual par-
ticles, if j <K, whereK is a model parameter, i.e.,

r-

rs
its
packing
ion
the more

onal to the
FIG. 2. ~a! Demonstration of porosity of the granular material as a result of random packing of the clusters with hexagonal
~described in Sec. II A!. Areas of loose packing are indicated by dashed lines.~b! Graphical representation of the cluster fragmentat
described in Sec. II B of the main text: The external tap on the system can lift beads. The larger the amplitude of the external force,
beads become free and can take part in the fragmentation process, and, hence, the rate of clusters fragmentation is proporti
dimensionless accelerationG.
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cj→ H cj 2K1Kc1

jc1

if j .K,
if j <K. ~4!

Expression~4! assumes that the fragmentation rate is in
pendent of cluster size. We will discuss in Sec. IV how d
ferent fragmentation mechanisms with respect to cluster
j can influence the dynamic features of compaction.

The separation of a bead from a cluster is constrained
the particle’s own weight as well as by the weights of oth
overlaying particles in the cluster. For this particle to se
rate from a cluster, it is necessary to overcome the constr
ing weight. The external tap on the system can relax
constraint by lifting the constraining weight. The larger t
amplitude of the external force, the more particles beco
free and can take part in the fragmentation process@Fig.
2~b!#. For this reason, we assumed for the rate of clus
fragmentation a linear dependence on the shaking force,
hence, the rate of clusters fragmentation is proportiona
the ‘‘dimensionless acceleration’’G ~G5atap/g, whereatap
is the acceleration due to the external tap andg59.8 m/s2 is
the gravitational acceleration!:

K5aG. ~5!

Taking a51, we will use G as a notation for this mode
parameterK.

~ii ! The individual particles separated from the cluster
the single tap would immediately reassociate with other c
ters in the system. For each particle the probability of re
sociation,g j , with a cluster of sizej was determined by

g j5
nj

ntot
, ~6!

wherenj is the number of clusters withj particles, andntot is
the total number of clusters in the system. Expression~6!
means that we consider an infinite granular medium, wh
all possible spatial combinations of clusters are realized,
we do not keep track of the mutual spatial positions of
clusters with respect to each other.

Our model has one dynamic parameter,G, and one fit
parameter,v1 . Changes ofv1 do not change the dynamics o
compaction, but only change a scale of absolute values o
densityr. A value of the parameterv1 was chosen so that th
calculated steady-state densityr at the applied acceleratio
G57 would match the experimental value ofr at the same
acceleration. The valuev150.9 was used in our simulations

Results of Monte Carlo simulations based on the
scribed model and their discussion are given in the follow
section.

III. RESULTS OF MONTE CARLO SIMULATIONS

A. Time evolution of the volume packing fraction

Figure 3 shows a typical Monte Carlo simulation of t
density evolution for a system of 3000 particles at a fix
applied accelerationG57. In close agreement with the re
sults of experiments by Knightet al. @4# and Nowaket al.
@22#, r(t) increases logarithmically and eventually levels o
at the longest times. Similar behavior was found for differe
values ofG and could be consistently fitted to the form@4,22#
-
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r~ t,G!5r~`,G!2
r~`,G!2r~0,G!

11B ln~11t/t!
, ~7!

wherer~0,G! is the initial starting density~about 0.59 for our
simulations! and r~`,G! the final, steady-state density afte
leveling off. The characteristic time of the leveling off,t* , is
a nonlinear function of the parameterG ~Fig. 4!. This func-
tional dependence was fit with a function~8! shown in Fig.
4:

FIG. 3. Time evolution of the volume packing fraction,r, for a
system of 3000 particles. The final steady-state density~dashed
line! depends on the magnitude of applied external force, whic
proportional to the dimensionless acceleration,G.

FIG. 4. Characteristic time of the leveling off,t* , as a function
of the parameterG. Solid line represents fit to the data with th
function ~8! given in the text.
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t* ;
1

~G221!
. ~8!

Simulations of the steady states extended for more tha
3107 Monte Carlo steps~MCS! did not demonstrate notice
able drift of the average steady-state density.

It is interesting to note that smoothness of ther(t) curve
~the amplitude of the density fluctuations! for t,t* depends
on the initial cluster distribution. Ther(t) curve is a mo-
notonously increasing function of time, when all the initi
clusters are small (i<3) and, ideally, monodisperse. How
ever, when the initial cluster distribution is randomized in
range 2< i<20, ther(t) curve is not monotonous anymor
and the amplitude of the density fluctuations approaches
values observed in the experiments.

B. Reversibility and irreversibility of granular compaction

Simulations closely reproduce the experimental res
@20,22# for the density dependence on the history of howG
was varied@Fig. 5~a!#: Starting from a low initial packing
density atG50, r increases with increasingG as voids are
eliminated, and a system of loosely packed particles fi
undergoes irreversible compaction, corresponding to
lower branch ofr~G!. For sufficiently largeG, however,r
eventually begins to slowly decrease since at higher ac
erations void ‘‘annealing’’ through the clusters associat
competes with void creation during each tap due to the c
ters fragmentation. If the cycle of increasingG is followed by
a cycle of decreasingG, we find thatr~G!, rather than fol-
lowing the original curve and decreasing back to its init
density, continues to increase until it reaches a maximum
G51. Subsequent changes ofG ~shown by squares! trace out
a reversible, upper branch of ther~G! curve.

Our results show that because of exceedingly slow den
relaxation with time, the irreversible behavior depends on
length of timeDt spent at each value ofG. For the given
number of taps per point,Dt, compaction behavior become
reversible only after a characteristic accelerationG* has
been exceeded@G* '3 for Dt'33104, Fig. 5~a!#. It is also
interesting to note thatG and the average steady-state valu
of r are not necessarily independent. In fact, our model s
ply relates these two quantities to each other.

We also studied the dependence of the steady-state
sity (t→`) on G in the reversible regime@Fig. 5~b!#. For
G>2, the density values are close to the random pack
limit and quantitatively agree with corresponding experime
tal density values@20#. However, forG51 the entire system
of beads transforms into a single cluster state with the m
mal density 0.74r0 . Growth of such single clusters with hex
agonal packing, ‘‘crystallization,’’ was recently observed
experiments@23,24#. The characteristic time of crystalliza
tion, tcrystallization, starting with a random initial distribution
of clusters, depends on the total number of beads in the
tem ~Fig. 6!, and scales as

tcrystallization'~0.760.3!Ntot
2 . ~9!

No crystallization was observed in a system of 1000 partic
after more than 109 Monte Carlo steps atG52.
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C. Density fluctuations in the steady state

We have studied the density fluctuations around the a
age steady-state values in the reversible regime. Figu
shows the corresponding time record for a system of 3
particles atG57 ~after previously applying 105 taps to reach
the steady state!. The power spectral densitySr(v) is plotted
in Fig. 8. These spectra have Lorentzian shape and, for
entire range of accelerations, show two characteristic
gimes: ~i! a white-noise regime,Sr( f );v0, below some
frequency valuev* , ~ii ! Sr( f );v22 abovev* . The values
of the characteristic ‘‘corner’’ frequencyv* depend on the
amplitude ofG ~Fig. 9! and can be fitted with a function:

v* ;G2 ~10!

in quantitative agreement with corresponding experimen
values@22#.

FIG. 5. ~a! Density,r~G!, dependence on the history of how th
vibration intensityG was applied for a system of 3000 particles. T
closed symbols representr~G! for a sequence of runs in which th
vibration intensity was first incremented fromG50 up to G57
with Dt;33104 taps at each value ofG. The open symbols repre
sent the density as the value ofG was decreased back down to
~again with 33104 taps per point and after the achieved dens
was recorded!. ~b! The closed symbols represent dependence of
steady-state densityr(G,t→`) on G in the reversible regime. The
open symbols represent the density as the value ofG was decreased
as in ~a!.
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The ‘‘corner’’ frequencyv* can be related to the invers
of the characteristic time of the leveling off, 1/t* ~Fig. 10!. A
linear fit to this plot yields the relationship

v* 5~0.5660.06!
2p

t*
. ~11!

This result means that the transition of the granular mate
from an initial state with loose random packing to the stea
state forG>4, primarily depends on the cluster kinetics, b
not on the initial cluster distribution. Thus, the kinetic da
obtained from density fluctuations in steady state may
used to study the dynamics of irreversible compaction.

The power spectral density observed in the experim
@22# does not always have simple Lorentzian shape,
sometimes~near the bottom of a container with the granu
material! deviates from;v22 for frequencies abovev* .
This deviation can be attributed to the gradual, one-by-o
reassociation of individual particles separated from a clu
@25#: at first, the individual particles are separated from
cluster during one tap and are ‘‘quenched’’ in such ‘‘sep
rated’’ form; and then, only on following taps, these ind
vidual particles reassociate rapidly with surrounding cluste
This scenario can explain why in our simulations we do

FIG. 6. Characteristic time of crystallization as a function of t
total number of particles in the system. The straight line is a fit w
quadratic function:tcrystallization;Ntot

2 @Eq. ~9!#.

FIG. 7. Time trace of density fluctuations in the stea
state: Dr is the difference between the instantaneous packing f
tion and the steady-state density.
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observe the deviation of the power spectral density fr
simple Lorentzian shape: it is because we assume tha
individual particles separated from a cluster reassociateim-
mediately~on the same tap! with surrounding clusters.

The cluster structure model accounts for the observed
perimental amplitude of average density fluctuations, con
erably higher than that expected from a statistical estima

^Dr2&;Ntot
21, ~12!

c-

FIG. 8. Power spectrum corresponding to the extended recor
the density fluctuations in Fig. 6. Dashed line,;v22, is given as a
guide for the eyes. ‘‘Frequency,’’v, is measured in units of invers
Monte Carlo steps (MCS21).

FIG. 9. The characteristic ‘‘corner’’ frequency,v* , as a func-
tion of amplitudeG. The functional form of the fit isv* ;G2 @Eq.
~10!#.
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2112 PRE 58KONSTANTIN L. GAVRILOV
whereNtot is the total number of particles in a system. O
model predicts instead that the average density fluctuat
depend on the total number of clusters in a system~Fig. 11!:

^Dr2&;ntot
21, ~13!

wherentot is the total number of clusters in a system. Fo
system ofNtot56000 particles grouped intontot'120 clus-
ters atG55, our model predictŝDr2&'1.531025 ~with the
corresponding experimental value@22# ^Dr2&'531025!.

D. Steady-state cluster distributions

The simulations typically start with a random initial di
tribution of clusters with respect to the number of particles

FIG. 10. Relationships between the corner frequency,v* , and
the inverse of the characteristic time of the leveling off, 1/t* . The
fit function is v* 5(0.7060.35)2p/t* @Eq. ~11!#.

FIG. 11. The average density fluctuations atG57 as a function
of the total number of clusters in the system. The total numbe
particles in the system is given in the brackets.
r
ns

a cluster. The initial distribution evolves to a steady-st
distribution. A mean steady-state distribution~Fig. 12! does
not depend on initial conditions. The mean steady-state
tribution has an exponential shape and for different value
G can be consistently described by a formula:

ni5n0G~120.14i !, ~14!

whereni is the number of clusters withi particles in each,n0
is a normalizing constant depending only on the total num
of particles in a system, andi>2. These results suggest th
our model could have a mean-field representation, simila
the Smoluchowski equation, that would describe the ste
states and relaxation time from the initial to the steady st
Such mean-field theory would be useful for the study
more general classes of granular systems.

IV. DISCUSSION

The close agreement of our cluster model with expe
mental behavior raises the following question.

A. Why does this one-dimensional model describe so well the
variety of dynamic effects in a three-dimensional system?

The agreement between experiment and simulati
seems not just a matter of coincidence, but a generic resu
the cluster approach. Actually, it is not the first time tha
one-dimensional cluster model has described propertie
two- and three-dimensional systems. Other examples ca
found in, e.g., polymerization@26# and traffic flow on a mul-
tilane freeway@18,19#. The key feature of the cluster ap
proach is that the dimensionality of a problem can be
counted for by the kinetics of individual clusters. In the ca
just studied this kinetics is described by formulas~4!–~6!.
f

FIG. 12. A typical mean steady-state cluster distribution,ni , for
a system of 3000 particles atG57; the distribution does not depen
on initial conditions and has an exponential shapeni5n0G (120.14i )

@Eq. ~14!#. The inset shows the mean cluster size^ i & as a function
of the accelerationG for the same system.



it
u
t
e

op
od
o
-

ve

o
n

op
te

ec
d
h
c
ll

ua
pe
n

de
pe
is
on

fre
th
e

u

e
e

pl
e

e
a

as

ize

ti-

ied
ate.
on as
ics

te
av-

n.
of
te.

of
this
is
ach

pos-
cts
ex-
of

s-
cles

zed
r
-
n.
de-
ates
al

the
ex-
ar

ion
te

nds
ster

ra-
si-
l

the
-state

ion
on,
the
to
ap-
om
sid-
ters

PRE 58 2113CLUSTER MODEL FOR COMPACTION OF VIBRATED . . .
Thus, the comparison of these models’ predictions w
the experimental data suggests that the hypothetical gran
clusters introduced in the model description are not jus
convenient and efficient way of giving a mathematical d
scription, but rather real entities, which determine the pr
erties of the granular systems. The agreement of the m
with the experimental behaviors implies a primary role
small strongly correlated regions~hexagonally packed clus
ters! on the properties of randomly packed material.

This, and the fact that the model gives direct control o
the microdynamics of a granular system, could be used
extract microscopic properties of granular materials and c
stants of the elementary processes from the experime
data.

B. This model as a tool to study the microdynamics
of granular compaction

One can gain several insights into the microscopic pr
erties of granular materials by varying the model parame
to fit the experimental data.

~i! How do clusters split? The cluster dynamics in S
II B supposes the fragmentation rate of clusters to be in
pendent of cluster size. However, the fragmentation mec
nism may depend on the cluster size. For example, one
imagine that the fragmentation may occur preferentia
along a linear dimension of the cluster,

K; i 1/3G, ~15!

or on the entire cluster surface, and then

K; i 2/3G. ~16!

Our preliminary simulation results on steady-state fluct
tions for these fragmentation scenarios indicate that the s
tral shape (;v22) is not affected when the fragmentatio
coefficient is varied fromi 0 @Eq. ~5!# to eitheri 1/3 @Eq. ~15!#
or i 2/3 @Eq. ~16!#. However, the ‘‘corner’’ frequencyv* and
the average amplitude of fluctuation may change consi
ably. These effects may be relevant to those observed ex
mentally @20#: the integrated noise power near the top
smaller than the noise power closer to the bottom of a c
tainer filled by a granular material.

The fragmentation rate also depends on how much
space is available for individual beads to separate from
cluster. This leads to questions about cluster arrangem
and voids sizes, as follows.

~ii ! How do clusters arrange in a granular material? O
model has one fit parameterv1 mean void volume per one
particle in a cluster. Its value may provide us with the answ
to the question about clusters arrangement. This param
was chosen to match a steady-state density at an ap
accelerationG57 with its experimental value at the sam
acceleration.

~iii ! We have assumed linear dependence of the rat
fragmentation on amplitude of external force and, thus,
sumed linear dependence, Eq.~5!, of the dynamic model
parameterK and the dimensionless accelerationG. However,
one can suggest different mechanisms for fragmentation
function of the external force, e.g.,;G2 @in analogy with the
different mechanisms of fragmentation as a function of s
h
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Eqs.~5!, ~15!, and~16!#. We believe that it will be possible
to study the relationship betweenK and G at different re-
gimes of vibration by comparing experimental and theore
cal results.

Many of the properties discussed above can be stud
from measurements of density fluctuations in a steady st
This suggests measurements of the steady-state fluctuati
an effective experimental technique to study microdynam
of granular media. Result~9! indicates that the steady-sta
fluctuations can also be used for study of irreversible beh
ior of the granular media approaching the steady state.

Another interesting property to study is the crystallizatio
It will be very interesting to compare an experimental rate
the crystallization with the theoretical predictions of the ra

V. CONCLUSION

A microscopic one-dimensional model for compaction
a vibrated granular material has been proposed. In
model, the granular material undergoing vertical vibrations
considered as a system of randomly packed clusters. E
cluster in the system is supposed to have the maximum
sible density achieved through hexagonal packing. Defe
of packing are considered as mismatched placing of the h
agonally packed clusters. Vibrations cause fragmentation
clusters through separating of individual particles from clu
ters, and consequent reassociation of the individual parti
with surrounding clusters.

The density state of the granular material is characteri
by the distribution of clusters,nj , with respect to the numbe
of particles in the cluster,j . Compaction of a granular ma
terial is explained as an evolution of the cluster distributio
The steady-state cluster distribution, as a result of the
tailed balance between fragmentation and association r
for eachnj , can be achieved when the intensity of extern
vibrations is fixed. The dependence of the value of
steady-state density on the intensity of the vibrations is
plained as a shift in the equilibrium distribution of granul
clusters due to the change of the fragmentation rate.

The irreversible behavior corresponds to the transit
from a random initial cluster distribution to the steady-sta
cluster distribution, and the reversible behavior correspo
to the transition between the different steady-state clu
distributions.

For granular systems subjected to small external vib
tions (G51), this model predicts the existence of a tran
tion into the crystalline state~a single cluster with hexagona
packing!.

The mechanism for cluster fragmentation suggested in
present paper describes spectral properties of the steady
density fluctuations, such as a white-noise regime,;v0, be-
low the ‘‘corner’’ frequencyv* ; ;v22 regime abovev* ;
and the values of the characteristic corner frequencyv* .

The results also suggest that this model, in combinat
with experiments on the steady-state density fluctuati
could be an effective experimental technique to study
microdynamics of granular media. It would be appropriate
emphasize a key feature of the model, namely, cluster
proach: the view of granular media as systems with rand
packing of individual particles has been changed to con
ering the media as systems with random packing of clus
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of particles. The existence of small regions strongly cor
lated due to hexagonal packing can be a theoretical justifi
tion of such an approach.

It is important also to note computational usefulness a
efficiency of the cluster approach, which allows us to sub
vide the problem:~i! computation of kinetic properties o
individual cluster, and~ii ! computation of dynamics o
granular media on the macroscopic scale. This subdivis
in principle, may allow for the incorporation of more e
ementary processes into theory, still preserving the efficie
of computations.

These first results of the simulations and their agreem
with experiments demonstrate that this model, and the clu
approach in general, has a considerable potential for hel
.
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to understand the behavior of granular materials. The pre
tive power of the proposed model will not fail to stimula
and facilitate the formulation of new experiments.
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